Abstract

Mobile electronic devices require stable, portable and energy-efficient frequency references (or clocks). However, current approaches using quartz-crystal and microelectromechanical oscillators suffer from frequency drift. Recent advances in chip-scale atomic clocks, which probe the hyperfine transitions of evaporated alkali atoms, have led to devices that can overcome this issue, but their complex construction, cost and power consumption limit their broader deployment. Here we show that sub-terahertz rotational transitions of polar gaseous molecules can be used as frequency bases to create low-cost, low-power miniaturized clocks. We report two molecular clocks probing carbonyl sulfide (16O12C32S), which are based on laboratory-scale instruments and complementary metal–oxide–semiconductor chips. Compared with chip-scale atomic clocks, our approach is less sensitive to external influences and offers faster frequency error compensation, and, by eliminating the need for alkali metal evaporation, it offers faster start-up times and lower power consumption. Our work demonstrates the feasibility of monolithic integration of atomic-clock-grade frequency references in mainstream silicon-chip systems. The sub-terahertz rotational transitions of polar molecules can be used as frequency bases to create low-cost, low-power miniaturized clocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call