Abstract

Ni-rich cathode materials, specifically NMC811, have high specific energy that make them suitable for various applications, including long-range electric vehicles (EVs). However, their intrinsic drawbacks, such as particle cracking, lattice oxygen release, surface reconstruction, and Li/Ni ion mixing, limit their practical uses due to safety concerns and low cycle life. Although numerous approaches have been used to deal with these downsides, none of them is yet considered the best, and they have increased the time and cost of production. This research aims to reduce the inherent shortcomings of NMC811 by using an old blending concept between NMC811 and LMO, which is commercially practicable and affordable. By carefully adjusting the blend to a weight ratio of 2:1, a blended NMC811/LMO cathode can provide superior capacity retention of over 50% after 750 cycles, which is better than the pristine NMC811. Additionally, the specific capacity increases by about 54% when compared to pristine LMO. This optimal blend of NMC811 and LMO presented here is believed to be one of the best ways to address the inherent disadvantages of Ni-rich cathode materials and could lead to useful applications such as long-range electric vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call