Abstract

Parameterizing performance models for multi-threaded enterprise applications requires finding the service rates offered by worker threads to the incoming requests. Statistical inference on monitoring data is here helpful to reduce the overheads of application profiling and to infer missing information. While linear regression of utilization data is often used to estimate service rates, it suffers erratic performance and also ignores a large part of application monitoring data, e.g., response times. Yet inference from other metrics, such as response times or queue-length samples, is complicated by the dependence on scheduling policies. To address these issues, we propose novel scheduling-aware estimation approaches for multi-threaded applications based on linear regression and maximum likelihood estimators. The proposed methods estimate demands from samples of the number of requests in execution in the worker threads at the admission instant of a new request. Validation results are presented on simulated and real application datasets for systems with multi-class requests, class switching, and admission control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.