Abstract

Deep reinforcement learning (RL) is an advancing learning tool to handle robotics control problems. However, it typically suffers from sample efficiency and effectiveness. The emergence of Graph Neural Networks (GNNs) enables the integration of the RL and graph representation learning techniques. It realises outstanding training performance and transfer capability by forming controlling scenarios into the corresponding graph domain. Nevertheless, the existing approaches strongly depend on the artificial graph formation processes with intensive bias and cannot propagate messages discriminatively on explicit physical dependence, which leads to restricted flexibility, size transfer capability and suboptimal performance. This paper proposes a fuzzy attention mechanism-based heterogeneous graph neural network (FAM-HGNN) framework for resolving the control problem under the RL context. FAM emphasises the significant connections and weakening of the trivial connections in a fully connected graph, which mitigates the potential negative influence caused by the artificial graph formation process. HGNN obtains a higher level of relational inductive bias by conducting graph propagations on a masked graph. Experimental results show that our FAM-HGNN outperforms the multi-layer perceptron-based and the existing GNN-based RL approaches regarding training performance and size transfer capability. We also conducted an ablation study and sensitivity analysis to validate the efficacy of the proposed method further.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.