Abstract
To seek for a possible origin of fractal pattern in nature, we perform a molecular dynamics simulation for a fragmentation of an infinite fcc lattice. The fragmentation is induced by the initial condition of the model that the lattice particles have the Hubble-type radial expansion velocities. As time proceeds, the average density decreases and density fluctuation develops. By using the box counting method, it is found that the frequency-size plot of the density follows instantaneously a universal power-law for each Hubble constant up to the size of a cross-over. This cross-over size corresponds to the maximum size of fluctuation and is found to obey a dynamical scaling law as a function of time. This instantaneous generation of a nascent fractal is purely of dynamical origin and it shows us a new formation mechanism of a fractal patterns different from the traditional criticality concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.