Abstract

An all-encompassing finite-strain representation of rods, shells and continuum can share a common kinematic/constitutive framework where specific conditions for strain, stress and constitutive updating are applied. In this work, finite strain beams are under examination, with several classical requirements met by cooperative techniques judiciously applied. Specifically: the use of a continuum constitutive law is possible due to the relative strain formulation previously introduced, the rotation singularity problem is absent due to the use of a consistent (quadratic) updated Lagrangian technique. Objectiveness and path-independence of director interpolation are satisfied due to the use of a Lowdin frame. These properties are proved in this work. Moreover, high coarse-mesh accuracy is introduced by the least-squares assumed-strain technique, here specialized for a beam. Examples show the accuracy and robustness of the formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.