Abstract

As the human genome sequencing projects near completion, there is an active search for technologies that can provide insights into the genetic basis for physiological variation and interpreting gene expression in terms of phenotype at the whole organism level in order to understand the pathophysiology of disease. We present a novel metabonomic approach to the investigation of genetic influences on metabolic balance and metabolite excretion patterns in two phenotypically normal mouse models (C57BL10J and Alpk:ApfCD). Chemometric techniques were applied to optimise recovery of biochemical information from complex 1H NMR urine spectra and to determine metabolic biomarker differences between the two strains. Differences were observed in tricarboxylic acid cycle intermediates and methylamine pathway activity. We suggest here a new ‘metabotype’ concept, which will be of value in relating quantitative physiological and biochemical data to both phenotypic and genetic variation in animals and man.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.