Abstract

Optogenetics is the control and monitoring of genetically modified neurons that are responsive to light. It has opened the door for neuroscience research by providing a means to understand the neural circuit dysfunctions such as mood disorders, addiction, and Parkinson's disease. With the growing demand for biomedical implants, the need for a wireless power transfer (WPT) module is also increasing. An essential part of optogenetic implants is the power source of the device. A wireless optogenetic implant requires enough voltage and current to power an LED to stimulate the neurons. In this paper, a WPT module with a transmitter and a compact receiver module are presented. The receiver module contains a miniaturized 6 × 6 mm2 receiver antenna, a Schottky diode, and a mini-LED. The proposed WPT scheme utilizes near-field communication and inductive power transmission at 7.15 MHz frequency. Simulation results using High Frequency Structure Simulator (HFSS) show that the receiver antenna achieves up to a −15.37 dB return loss (Sii) at the resonating frequency. The fabricated WPT system transfers 500 mV pp to the receiver module at 5 mm distance for an input power of 0 dBm. The received power is rectified to provide an average 200 mV DC to turn on a mini-LED. The preliminary simulation and measurement results of the proposed WPT module show a better prospect for future optogenetics based applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.