Abstract

The conceptual evolution of rigid-to-flexible in future electronic platforms requires unprecedented innovations in materials and manufacturing technologies to suit the new usage environment of flexible electronics. This research presents a novel method to implement a flexible wireless power transfer (WPT) module with a low coil resistive loss by overcoming the technical limitations associated with the rigidity of ceramic materials and the thickness resolution of inkjet printing. To ensure the low resistive loss of the WPT module, a high-aspect-ratio form of the coil consisting of alternating layers of polyimide (PI) and Ag is built into the 3D NiZn-ferrite (NZF) spiral trench structure. A resonance capacitor is also inkjet-printed and integrated with the WPT coil to minimize the final dimension of the WPT module. The hybrid (PI/Ag) coil in the 3D NZF spiral trench with the resonance capacitor is then inserted into polydimethylsiloxane (PDMS) to render the entire 3D inkjet-printed structure flexible. The performance of the flexible WPT module is verified by charging a mobile phone under a flexible environment. The flexible WPT module is also successfully built into a wristband to demonstrate wireless charging of a smart watch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.