Abstract

PurposeCurrent flexible printed circuit (FPC) assembly relies heavily on manual labor, limiting capacity and increasing costs. Small FPC size makes automation challenging as terminals can be visually occluded. The purpose of this study is to use 3D tactile sensing to mimic human manual mating skills for enabling sensing offset between FPC terminals (FPC-t) and FPC mating slots (FPC-s) under visual occlusion.Design/methodology/approachThe proposed model has three stages: spatial encoding, offset estimation and action strategy. The spatial encoder maps sparse 3D tactile data into a compact 1D feature capturing valid spatial assembly information to enable temporal processing. To compensate for low sensor resolution, consecutive spatial features are input to a multistage temporal convolutional network which estimates alignment offsets. The robot then performs alignment or mating actions based on the estimated offsets.FindingsExperiments are conducted on a Redmi Note 4 smartphone assembly platform. Compared to other models, the proposed approach achieves superior offset estimation. Within limited trials, it successfully assembles FPCs under visual occlusion using three-axis tactile sensing.Originality/valueA spatial encoder is designed to encode three-axis tactile data into feature maps, overcoming multistage temporal convolution network’s (MS-TCN) inability to directly process such input. Modifying the output to estimate assembly offsets with related motion semantics overcame MS-TCN’s segmentation points output, unable to meet assembly monitoring needs. Training and testing the improved MS-TCN on an FPC data set demonstrated accurate monitoring of the full process. An assembly platform verified performance on automated FPC assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.