Abstract
We propose various low-latency spatial encoder circuits based on bus-invert coding for reducing peak energy and current in on-chip buses with minimum penalty on total latency. The encoders are implemented in dual-rail domino logic with interfaces for static inputs and static buses. A spatial and temporally encoded dynamic bus technique is also proposed for higher performance targets. Comparisons to standard on-chip buses of various lengths with optimal repeater configurations at the 130nm node show the energy-delay and peak current-delay design space in which the different encoder circuits are beneficial. A 9mm spatially encoded static bus exhibits peak energy gains beyond that achievable through repeater optimization for a single cycle operation at 1GHz, with delay and energy overhead of the encoding included. For throughput constrained buses, the spatially encoded static bus can provide up to 31% reduction in peak energy, while the spatially and temporally encoded dynamic bus yields peak current reductions of more than 50% for all bus lengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.