Abstract

A novel memristive synapse model based on the HP memristor is proposed in this paper, which can address the problem of synaptic weight infinite modulations. The sliding threshold mechanism of the Bienenstock-Cooper-Munro rule (BCM) is used to redefine the memristance (i.e. synaptic weight) adjustment process of the memristive synapse model. Based on the proposed memristor-based synapse and Leaky Integrate-and-Fire neurons, a spiking neural network (SNN) hardware fragment is constructed, where spike trains with different frequencies are used to evaluate the stability performance of the proposed SNN hardware. Results show that compared to other approaches, the network is stable under different stimuli due to the characteristics of the memristor-based synapse model, and prove that the proposed synapse model is able to mimic biological synaptic behaviour and the problem of synaptic weight infinite modulations is addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.