Abstract
This paper proposes an iterative algorithm for the search for common fixed points of two mappings. The properties of approximation and convergence of the method are analyzed in the context of Banach spaces. In particular, this article provides sufficient conditions for the strong convergence of the sequence generated by the iterative scheme to a common fixed point of two operators. The method is illustrated with some examples of application. The procedure is used to approach a common solution of two Fredholm integral equations of the second kind. In the second part of the article, the existence of a fractal function coming from two different Read–Bajraktarević operators is proved. Afterwards, a study of the approximation of fixed points of a fractal convolution of operators is performed, in the framework of Lebesgue or Bochner spaces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.