Abstract
We introduce the perturbed two-dimensional Robin bi-Laplacian in the exterior of a planar bounded simply-connected C2-smooth open set. The considered lower-order perturbation corresponds to tension. We prove that the essential spectrum of this operator coincides with the positive semi-axis and that the negative discrete spectrum is non-empty if the boundary parameter is negative. As the main result, we obtain an isoperimetric inequality for the lowest eigenvalue of such a perturbed Robin bi-Laplacian with a negative boundary parameter in the exterior of a bounded convex planar set under the constraint on the maximum of the curvature of the boundary with the maximizer being the exterior of the disk. The isoperimetric inequality is proved under the assumption that to the lowest eigenvalue for the exterior of the disk corresponds a radial eigenfunction. We provide a sufficient condition in terms of the tension parameter and the radius for this property to hold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.