Abstract
It is proved that for any Fuchsian group Γ such that ℍ/Γ is a hyperbolic Riemann surface, the Teichmuller curve V(Γ) has a unique complex manifold structure so that the natural projection of the Bers fiber space F(Γ) onto V(Γ) is holomorphic with local holomorphic sections. An isomorphism theorem for Teichmuller curves is deduced, which generalizes a classical result that the Teichmuller curve V(Γ) depends only on the type of Γ and not on the orders of the elliptic elements of Γ when ℍ/Γ is a compact hyperbolic Riemann surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.