Abstract

To gain knowledge about biological iron mobilization, tripodal monotopic and ditopic hydroxamate ligands (1 and 2) are prepared, and their iron-chelating properties are investigated. Ligands 1 and 2 contain three Ala-Ala-beta-(HO)Ala units and three [Ala-Ala-beta-(HO)Ala](2) units connected with tris(alanylaminoethyl)amine, respectively, and form six-coordinate octahedral complexes with iron(III) in aqueous solution. Ligand 1 and 1 equiv of iron give Fe-1, and ligand 2 and 1 or 2 equiv of iron produce Fe(1)-2, or Fe(2)-2. These complexes exhibit absorptions at lambda(max) 425 nm of epsilon 2800-3000/Fe, characteristic of tris(hydroxamato)iron(III) complexes, and preferentially assume the Delta-cis configuration. Loading of Fe(III) on 1, 2, and M(III)-loaded ligands (M-1 and M(1)-2, M = Al, Ga, In) with ammonium ferric oxalate at pH 5.4 is performed, and the second-order rate constants of loading with respect to Fe(III) and the ligand or M(III)-loaded ligands are determined. The rates of loading of Fe(III) on M-1 increase in the order Al-1 < Ga-1 < In-1, and those on M(1)-2 in the order Al(1)-2 < Ga(1)-2 < Fe(1)-2 < In(1)-2, indicating that the dissociation tendency of M(III) ions from the hydroxamate ligand is an important factor. The iron complexes formed with 2 are subjected to an iron removal reaction with excess EDTA in aqueous pH 5.4 solution at 25.0 degrees C, and the collected data are analyzed by curve-fitting using appropriate first-order kinetic equations, providing the rate constants for the upper site and the lower site of 2. Similar analysis for FeM-2 affords removal rate constants for Fe(up)-2, M(up)-2, and Fe(low)-2, and the iron residence probability at each site. The protonation constants of the hydroxamate groups for 1 and 2 (pK(1,) pK(2), pK(3), and pK(1,) pK(2)., pK(6)) are determined, and the proton-independent stability constants for Fe-1, the upper site of Fe(2)-2, and the lower site of Fe(1)-2 are 10(28), 10(29), and 10(28.5), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.