Abstract
A world of healthcare possibilities has been opened with the development of the Internet of Medical Things and related machine learning, deep learning, and artificial intelligence approaches. It has a broad range of uses: when linked to the Internet, common medical equipment and sensors may gather important data; deep learning and artificial intelligence algorithms use this data to understand symptoms and patterns and allow remote healthcare. There are a large number of people affected by thyroid disorders across the world. The ultrasound-based thyroid nodule detection using traditional methods increased the burden on the expertise. Therefore, alternate methods are required to overcome this problem. In order to facilitate early thyroid disorder detection, this research aims to offer an IoT-based ensemble learning framework. In the proposed ensemble model, three pre-trained models DeiT, Mixer-MLP and Swin Transformer, are used for feature extraction. The mRMR technique is used for relevant feature selection. A total of 24 machine learning models have been trained, and weighted average ensemble learning is employed using the Improved Jaya optimization algorithm and Coronavirus Herd Immunity optimization algorithm. The ensemble model with the improved Jaya optimization algorithm achieved excellent results. The best value for accuracy, precision, sensitivity, specificity, F2-score and ROC-AUC score are 92.83%, 87.76%, 97.66%, 88.89%, 0.9551 and 0.9357, respectively. The main focus of this research is to increase the specificity. A poor value of specificity can lead to a high false positive rate. This situation can increase anxiety and emotionally weaken the patient. The proposed ensemble model with the Improved Jaya optimization algorithm outperformed state-of-the-art techniques and can assist medical experts.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.