Abstract

Chromium (Cr) (VI) is a toxic, mutagenic, and carcinogenic water pollutant. The standard ion chromatography (IC) method for quantification of Cr (VI) in water samples is Environmental Protection Agency Method 218.7, which requires postcolumn derivatization with 1,5-diphenylcarbazide and UV-Vis spectroscopy detection. Method 218.7 is Cr (VI) specific; thus, it does not allow detection of co-occurring natural and anthropogenic anions in environmental media. In this study, we developed an isocratic IC method with suppressed conductivity detection, a Metrohm Metrosep A Supp 7 column, and sodium carbonate/acetonitrile as mobile phase for simultaneous quantification of Cr (VI), , As (V) as arsenate, Se (VI) as selenate, and the common anions F–, Cl–, , , and . The determination coefficient for every analyte was >0.99 and the method showed good accuracy in quantification. Cr (VI), As (V), Se (VI), and limit of detection and limit of quantification were 0.1–0.6 μg/L and 0.5–2.1 μg/L, respectively. Recovery of Cr (VI) in various aqueous samples (tap water, surface water, groundwater, and wastewater) was between 97.2% and 102.8%. Overall, most analytes showed acceptable recovery (80–120%) in the environmental samples tested. The IC method was applied to track Cr (VI) and other anion concentrations in laboratory batch microcosms experiments with soil, surface water, and anaerobic medium. The IC method developed in this study should prove useful to environmental practitioners, academic and research organizations, and industries for monitoring low concentrations of multiple anions in environmental media, helping to decrease the sample requirement, time, and cost of analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call