Abstract

A rapid and flexible parallel approach for viewshed computation on large digital elevation models is presented. Our work is focused on the implementation of a derivate of the R2 viewshed algorithm. Emphasis has been placed on input/output (IO) efficiency that can be achieved by memory segmentation and coalesced memory access. An implementation of the parallel viewshed algorithm on the Compute Unified Device Architecture (CUDA), which exploits the high parallelism of the graphics processing unit, is presented. This version is referred to as r.cuda.visibility. The accuracy of our algorithm is compared to the r.los R3 algorithm (integrated into the open-source Geographic Resources Analysis Support System geographic information system environment) and other IO-efficient algorithms. Our results demonstrate that the proposed implementation of the R2 algorithm is faster and more IO efficient than previously presented IO-efficient algorithms, and that it achieves moderate calculation precision compared to the R3 algorithm. Thus, to the best of our knowledge, the algorithm presented here is the most efficient viewshed approach, in terms of computational speed, for large data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.