Abstract
This study evaluated the effect of photobiomodulation therapy (PBMT) using 660 and 808 nm diode lasers (individual and in combination) on periodontal ligament mesenchymal stem cells (PDLSCs) in the presence of zoledronic acid (ZA). PDLSCs were cultured for 48 h in DMEM complete medium containing 5 μM ZA. PBMT was done three times with a 24-h interval in groups 1 (660 nm, 5 J/cm2), 2 (880 nm, 3 J/cm2), and 3 (660 + 808 nm) either in normal or ZA-treated culture medium. Control groups did not receive PBMT. Twenty-four hours post-irradiation, cell proliferation and expression of RANKL and OPG were assessed using MTT and real-time PCR tests, respectively. The results showed a significant decrease in cell viability in ZA-treated cells (p < 0.001). Additionally, ZA induced the expression of OPG (p = 0.03) while reducing RANKL (p < 0.001). Cell proliferation was significantly increased in 808 and 660 + 808 nm groups. Moreover, all PBMT groups could significantly increase and decrease the RANKL and OPG, respectively, in the presence of ZA (all p < 0.001). A combination of 660 + 808 nm showed the highest effects on both genes. In conclusion, it seems that PBMT can modulate the effects of ZA by inducing PDLSC proliferation and increasing RANKL-to-OPG gene expression ratio.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have