Abstract

Bio-materials have ignited a quest among research fraternity to be used in every possible field of applications like automobile, sports, medical, civil and textile industry. Application spectrum of natural fiber reinforced polymer composites is spreading globally in every field of engineering having structural and tribological applications. The present work investigates the tribological performance of regionally available inexpensive plant based natural fiber reinforced polymer composites. In this work, three different types of natural fibers (jute, hemp, and flax) were reinforced with epoxy matrix to fabricate natural fiber reinforced polymer composites (NFRP) and their hybrid composites (jute/hemp/Epoxy, hemp/flax/epoxy and jute/ hemp/flax/epoxy) using hand-layup technique. Tribological performance of the developed bio-composites were evaluated in terms of frictional characteristics and sliding wear under dry contact condition at different process parameters, such as applied load (10-50 N), sliding speed (1-5 m/s) and sliding distance (1000-2000 m). Experimental results of wear analysis confirmed that incorporation of natural fibers into epoxy polymer matrix significantly improved the wear behavior of the developed NFRP composites in comparison to neat epoxy polymer. Among all the developed composites, jute/epoxy composite achieved the highest coefficient of friction, frictional force and specific wear rate. Dynamic mechanical analysis (DMA) was also analyzed to evaluate the viscoelastic behavior of the developed composites. The surface morphology of samples after wear test was examined by scanning electron microscopy to investigate and propose the possible wear mechanism of the developed composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.