Abstract

Excellent fatigue, static strength and damage tolerance characteristics together with low density make fibre-reinforced aluminium laminates a prime candidate sheet material for application in fatigue- and fracture-critical aircraft structures. Their use requires that mechanical property design allowables be established for incorporation in design handbooks (e.g. MIL-HDBK-5). An experimental programme based on statistical design was conducted to establish a meaningful test procedure for determination of fibre-metal laminate bearing strength design allowables. The test procedures investigated are the pin-type bearing test method (ASTM E-238) and the bolt-type bearing test method, a modified method based on the procedure for bearing strength determinations in plastics (ASTM D-953). Results are presented from an experimental programme which measured the bearing strengths of two grades of S-2 glass-based and one grade of aramid-based aluminium laminates. The influences of lateral constraint and ply orientation on bearing strength and failure mode are shown. The bolt-type bearing test method, which combines the attributes of the two aforementioned methods, is recommended. The study also showed that the bearing properties for edge distance ratio e/D = 2 can be predicted by correlation with the aluminium volume fraction in fibre-reinforced aluminium laminates. In addition, diagrams of joint structural efficiency, shown to be comparable to those of aluminium alloy sheets, have been established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call