Abstract
The bearing properties of recently developed hybrid fiber/metal laminates, or COmmingled Boron/glass fiber Reinforced Aluminum laminates (COBRA), are investigated in this study. The bolt-type bearing tests on GLass REinforced aluminum laminates (GLARE), non-commingled hybrid boron/glass/aluminum fiber/metal laminates (HFML) and COBRA were carried out as a function of e/D ratio, metal volume fraction, fiber volume fraction, and fiber orientation. Experimental results show that with the same joint geometry and metal volume fraction, the commingling of boron fibers improves the bearing strength of fiber/metal laminates. Observations show the boron/glass fiber prepreg, transverse to the loading direction, results in a bearing mechanism that effectively increases the bearing strength. The bearing strength of COBRA with longitudinal fibers is lower than that with transverse fibers due to the fact that shearout failure takes place before maximum bearing strength is reached. The experimental results show that, with only either transverse fiber orientation or longitudinal fiber orientation, COBRA with 18% boron fiber volume fraction possesses a higher bearing strength when compared to HFML with 6% boron fiber volume fraction. In addition to the properties in COBRA with parallel-plies commingled prepreg, the bearing properties of various COBRA with [0°/90°] and [0°/90°/90°/0°] cross-ply commingled prepregs are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.