Abstract

Plant mediated fabrication of nanoparticles and nanomaterials are gaining momentum as it is eco-friendly and cost-effective. In the present study, we synthesis of Silver nanoparticles using aqueous extract of Quercus infectoria nuts and Daucus carota subsp sativum leaves. The surface plasma resonance at 417 and 450 nm for Q. infectoria and D. carota respectively confirmed the formation of AgNPs. Scanning Electron Microscopic (SEM) confirmed the spherical shape of the nanoparticles, which had an average size of 67.5 nm and 49.2 nm for Q. infectoria nanoparticles (QAgNPs)and D. carota nanoparticles (DAgNPs). The elemental composition by Energy-Dispersive X-ray analysis of the nanoparticle showed an atomic percentage of silver as 73.64 % and 75.93% for Q. infectoria and D. carota.FT- IR analysis of the plant extracts and synthesized silver nanoparticles showed the presence of various functional groups. The total antioxidant activity of QAgNPs was 81.18% and that of DAgNPs was 73.36%. The QAgNPs and DAgNPs exhibited antibacterial activity against B. subtilis, E. coli and S. aureus. The percentage of cell viability for QAgNPs and DAgNPs assessed using HeLa cells was 21.1% and 6% respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call