Abstract

Adhesion is a crucial characteristic of hydrophobic surfaces that significantly impacts their practical applications. This paper proposes an innovative method for preparing a dual-scale micro-nano composite structure surface by combining mechanical ruling and anodic oxidation, which demonstrates great potential in enhancing hydrophobic surface properties. Through the analysis of the influence of micro-groove depth on the adhesion of hydrophobic surfaces, it has been discovered that micro-groove dimensions can be used to control surface adhesion while maintaining hydrophobicity, without complex chemical modifications. These findings present a promising approach for tailoring the properties of hydrophobic surfaces to suit specific applications. Compared with the single-scale micro-groove array structures, the surface roughness of the dual-scale micro-nano composite structures is significantly increased, and the contact angle of the water droplet is significantly increased. At the same time, the hydrophobicity and adhesion of the surface of the dual-scale micro-nano composite structures were analyzed. The results show that after anodizing, the contact angle of the dual-scale micro-nano composite structure surface increases, and the surface adhesion can be controlled by adjusting the structural parameters of the micro-groove and the anodizing process parameters, to ensure that the surface presents hydrophobic property while realizing the controllable adhesion of the hydrophobic surface. In this paper, dual-scale micro-nano composite structures fabricated by the composite method have achieved hydrophobic properties, and the surface adhesion can be effectively controlled by adjusting the processing parameters. This method has certain reference significance for the preparation of the controllable adhesive hydrophobic surface and lays a foundation for the further study of the controllable adhesive hydrophobic surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call