Abstract

Ciprofloxacin (CIP) and norfloxacin (NOR) belong to the class of emerging contaminants that are frequently detected in the aquatic environment as a binary mixture, responsible for the development of antibiotic-resistant genes and antibiotic-resistant bacteria. This study aims to investigate five different algal species Chlorella vulgaris (Cv), Chlorella pyrenoidosa (Cp), Scenedesmus obliquus (So), Tetradesmus sp (T) and Monoraphidium sp (M) for their tolerance and removal of binary mixture. The effects on biochemical composition in the algal species concerning the binary mixture and its removal efficiency are first reported in this study. The acute toxicity (96 h EC50) values are in the order of So > Cp > T > M > Cv, Chlorella vulgaris is the most sensitive algal species with 17.73 ± 0.24 mg/L and Scenedesmus obliquus is the least sensitive algal species with 39.19 ± 0.79 mg/L. The removal efficiency of the binary mixture was found to be in the order of So > Cp > T > M > Cv, Scenedesmus obliquus removed CIP (52.4%) and NOR (87.5%) with biodegradation as the major contributing removal mechanism. Furthermore, less toxic biotransformed products were detected in Scenedesmus obliquus and the biochemical characterization revealed that the growth-stimulating effect is higher with lipid (35%), carbohydrate (18%), and protein (33%) providing an advantage in the production of valuable biomass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.