Abstract

ABSTRACT The effect of ultrasonic treatment (UST) and thermal annealing (THA) post-processes on the mechanical properties and the related microstructural mechanisms of the tensile pre-strained 316 stainless steel was investigated. It was shown that both processes reduce the microhardness and the yield point as well as increasing the elongation of the pre-deformed alloy. A 10% reduction of the yield point and 28% increase in the elongation was observed after the higher power UST (500 W), while an enhanced ductility of 56% and 41% reduction of the yield point was measured for the high-temperature THA (800°C) treated steel. The increased ductility was related to de-twinning and dislocation annihilation mechanisms, which increase the mean free path distance of dislocations. The de-twinning mechanism was proposed as the boundary migration mechanism and reverse gliding of the partial dislocations by cyclic shear stress for the THA and UST processes, respectively. Unlike the UST process, the high-temperature thermal annealing was associated with the formation of M23C6 precipitates, which causes depletion of alloying elements from the vicinity of grain boundaries and makes the alloy more prone to intergranular corrosion. Compared with THA, the advantages of the UST process are as follows: a rapid and straightforward process, low energy consumption, enhanced ductility without significant reduction in strength, and inhibition of grain boundary precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call