Abstract

The effects of 46 MeV proton irradiation induced trap generation and its impact on the electrical characteristics of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) from an advanced ultrahigh vacuum/chemical vapor deposition (UHV/CVD) SiGe BiCMOS technology are examined and discussed for the first time. At proton fluences as high as 10/sup 14/ p/cm/sup 2/ the peak current gain of the devices degraded by less than 8% compared to the pre-irradiated samples. The maximum oscillation frequency and cutoff frequency of the SiGe HBTs showed only minor degradation after 10/sup 14/ p/cm/sup 2/. Calibration of 2-D device simulation (MEDICI) to measured data in both forward and inverse modes of operation was used to infer the spatial location of the proton-induced traps. Traps in the collector-base space charge region appear as generation/recombination (G/R) centers in the inverse emitter-base region and are the result of displacement damage. Traps at the emitter-base spacer oxide interface appear as G/R centers in the forward emitter-base space charge region and are the result of ionization damage. Taken together, these results suggest that UHV/CVD SiGe HBT technology is robust to proton fluences at least as high as 10/sup 13/ p/cm/sup 2/ without radiation hardening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call