Abstract

This paper investigates the impact of the interconnect between the bottom and the top metal layers on the transistor RF performance of CMOS and silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technologies. State-of-the-art 32-nm silicon-on-insulator (SOI) CMOS and 120-nm SiGe HBT technologies are analyzed in detail. Measured results indicate a significant reduction in the unity-gain frequency (f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> ) from the bottom to the top metal layer for advanced CMOS technology nodes, but only a slight reduction for SiGe HBTs. The 32-nm SOI CMOS and SiGe HBT technologies have a reduction in the maximum oscillation frequency (f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> ) from the bottom to the top metal layer of ~12% and 5%, respectively. By analyzing technology scaling trends, it is clear that SiGe HBTs can now achieve a similar peak f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> at the top metal layer in comparison with advanced CMOS technology nodes, and a significantly higher f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> . Furthermore, in CMOS technologies, the top metal layer f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> appears to have reached a peak around the 45-65-nm technology nodes, a result which has significant implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call