Abstract

We investigate the sensing capabilities of magnetotactic bacteria (Magnetospirillum gryphiswaldense strain MSR1) to MCF-7 breast cancer cells. Cancer cells are allowed to grow inside a capillary tube with depth of 200 $\mu \mathrm {m}$ and motion of magnetotactic bacteria is investigated under the influence of oxygen gradient and geomagnetic field. The influence of cancer cells is modeled to predict the oxygen gradient within the capillary tube in three-dimensional space. Our experimental motion analysis and count of motile magnetotactic bacteria indicate that they migrate towards less-oxygenated regions within the vicinity of cancer cells. Bands of magnetotactic bacteria with average concentration of 18.8±2.0% are observed in close proximity to MCF-7 cells $(h = 20~ \mu \mathrm {m})$, whereas the concentration at proximity of $190~ \mu \mathrm {m}$ is 5.0 ± 6.8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.