Abstract

In our recent studies, diamond-like carbon (DLC) films were found to possess low coefficient of friction ( f < 0.1) and excellent wear resistance. The reduction in f was found to be consistent with wear-induced graphitization of the DLC structure. The purpose of the present work was to study the effect of load and sliding velocity on the frictional behavior and graphitization process occurring in DLC during wear. Pin-on-disc experiments were conducted on DLC-coated SiC substrates at sliding velocities between 0.06 and 1.6 m s −1 under 1 and 10 N loading levels using ZrO 2 balls as the pin material. Analytical transmission electron microscopy was used to characterize the structure and microstructure of the wear debris after testing. The results showed that both sliding velocity and contact load influence the graphitization process. Higher sliding velocities increase the contact frequency and the rate of temperature rise that may facilitate the release of hydrogen atoms from the sp 3 structure. Higher loading enhances shear deformation and transformation of the weakened hydrogen-depleted DLC structure into graphite [10]. The present findings are consistent with our earlier proposed wear-induced graphitization mechanism for these films. An equation was developed to describe the transformation kinetics of DLC into graphite as a function of sliding velocity and applied stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.