Abstract

Deep learning-based computer-aided diagnosis (CAD) is an important method in aiding diagnosis for radiologists. We investigated the accuracy of a deep learning-based CAD in classifying breast lesions with different histological types. A total of 448 breast lesions were detected on ultrasound (US) and classified by an experienced radiologist, a resident and deep learning-based CAD respectively. The pathological results of the lesions were chosen as the golden standard. The diagnostic performances of the three raters in different pathological types were analyzed. For the overall diagnostic performance, deep learning-based CAD presented a significantly higher specificity (76.96%) compared with the two radiologists. The area under ROC of CAD was almost equal with the experienced radiologist (0.81 vs. 0.81), while significantly higher than the resident (0.81 vs. 0.70, P<0.0001). In the benign lesions, deep learning-based CAD had a higher accuracy than both the two radiologists, which correctly classified as benign lesions in 119/135 of fibroadenomas (88.1%), 25/35 of adenosis (71.4%), 14/27 of intraductal papillary tumors (51.9%), 5/10 of inflammation (50%), and 4/8 of sclerosing adenosis (50%). But only the differences between CAD and the two radiologists in fibroadenomas had statistical significance (P=0.0011 and P=0.0313), and the differences between CAD and the resident in adenosis had statistical significance (P=0.012). In the malignant lesions, 151/168 of invasive ductal carcinomas (89.9%), 21/29 of ductal carcinoma in situ (DCIS) (72.4%) and 6/7 of invasive lobular carcinomas (85.7%) were diagnosed as malignancies by deep learning-based CAD, with no significant differences between CAD and the two radiologists. In the diagnosis of these common types of breast lesions, deep learning-based CAD had a satisfying performance. Deep learning-based CAD had a better performance in the breast benign lesions, especially in fibroadenomas and adenosis. Therefore, deep learning-based CAD is a promising supplemental tool to US to increase the specificity and avoid unnecessary benign biopsies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call