Abstract
To evaluate the effect of a deep learning-based computer-aided diagnosis (DL-CAD) system on experienced and less-experienced radiologists in reading prostate mpMRI. In this retrospective, multi-reader multi-case study, a consecutive set of 184 patients examined between 01/2018 and 08/2019 were enrolled. Ground truth was combined targeted and 12-core systematic transrectal ultrasound-guided biopsy. Four radiologists, two experienced and two less-experienced, evaluated each case twice, once without (DL-CAD-) and once assisted by DL-CAD (DL-CAD+). ROC analysis, sensitivities, specificities, PPV and NPV were calculated to compare the diagnostic accuracy for the diagnosis of prostate cancer (PCa) between the two groups (DL-CAD- vs. DL-CAD+). Spearman's correlation coefficients were evaluated to assess the relationship between PI-RADS category and Gleason score (GS). Also, the median reading times were compared for the two reading groups. In total, 172 patients were included in the final analysis. With DL-CAD assistance, the overall AUC of the less-experienced radiologists increased significantly from 0.66 to 0.80 (p = 0.001; cutoff ISUP GG≥1) and from 0.68 to 0.80 (p = 0.002; cutoff ISUP GG ≥ 2). Experienced radiologists showed an AUC increase from 0.81 to 0.86 (p = 0.146; cutoff ISUP GG ≥ 1) and from 0.81 to 0.84 (p = 0.433; cutoff ISUP GG ≥ 2). Furthermore, the correlation between PI-RADS category and GS improved significantly in the DL-CAD + group (0.45 vs. 0.57; p = 0.03), while the median reading time was reduced from 157 to 150 s (p = 0.023). DL-CAD assistance increased the mean detection performance, with the most significant benefit for the less-experienced radiologist; with the help of DL-CAD less-experienced radiologists reached performances comparable to that of experienced radiologists. • DL-CAD used as a concurrent reading aid helps radiologists to distinguish between benign and cancerous lesions in prostate MRI. • With the help of DL-CAD, less-experienced radiologists may achieve detection performances comparable to that of experienced radiologists. • DL-CAD assistance increases the correlation between PI-RADS category and cancer grade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.