Abstract

During in situ liquid secondary ion mass spectrometry (SIMS) analysis, the primary ion beam is normally scanned on a very small area to collect signals with high ion doses (1014 to 1016 ions/cm2 ). As a result, beam damage may become a concern when compared with the static limit of SIMS analysis, in which the dose is normally less than 1012 ions/cm2 . Therefore, a comparison of ion yields in in situ liquid SIMS analysis versus traditional static SIMS analysis of corresponding dry samples is of great interest. In this study, a dipalmitoylphosphatidylcholine (DPPC) liposome solution was used as a model system. Both liquid sample and dry sample were examined. Secondary ion yields using three primary ion species (Bi+ , Bi3+ and Bi3++ ) with various beam currents were investigated. Usable ion yields for both positive and negative characteristic signals (including molecular ions and characteristic fragment ions) were achievable based on optimized experimental conditions for in situ liquid SIMS analysis. The ion yield of the key DPPC molecular ion was comparable to that of traditional static SIMS, and unexpected low fragmentation was observed. The flexible structure of the liquid plays an important role for these observations. Therefore, beam damage may not be a concern in in situ liquid SIMS analysis if proper experimental conditions are used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.