Abstract

Molecular dynamics (MD) simulations were performed to investigate the adsorption of potassium stearate molecules on diamond-like carbon (DLC) substrate. The effects of non-bonded interactions and confinement conditions on the adsorption were investigated. The confinement conditions performed herein were achieved by imposing a Z-direction constraint on the movement of molecules in the initial stage of adsorption, and then releasing the molecules from the constraint gradually. Our simulation results show that the polar end groups of molecules tended to accumulate during the adsorption, and the final distribution of adsorptive film without confinement was irregular. Under confinement conditions, the adsorptive film was evenly distributed on the substrate after reaching its equilibrium configuration, and the final inter-subsystem potential of the substrate on adsorptive film was obviously decreased as compared with the results without confinement. These findings provided an effective approach for promoting the adsorption of molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.