Abstract

The paper describes basic neutron-physics models developed in the Division of Advanced Nuclear Power Systems of the Institute of Nuclear Reactors, Russian Research Center Kurchatov Institute, as design models intended for calculating the characteristics of block fuel assemblies of a high-temperature gas-cooled reactor GT-MHR, namely, models for calculating burnup of fuel and isotopes of burnable neutron absorbers and calculating fuel assemblies at fixed points with respect to burnup with preparation of the neutron constants in a preassigned number of energy groups for full-scale design of a reactor. A model problem for investigation of calculated approximations is proposed. The outcome of this investigation is a developed stage-by-stage procedure of preparing group homogeneous cross sections of a fuel assembly and its parts that has been introduced into the practice of design calculations of a GT-MHR reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call