Abstract
Cerium doped fast scintillators such as LSO and LaBr 3 and fast photomultiplier tubes (PMT) have dramatically improved the timing performance of PET scanners in the last several years. Recent developments in high speed electronics brought new opportunities to understand and process the photosensor signals. In this work, a digital time alignment method is introduced and implemented using fast scintillators and photosensors with the combination of high speed digital electronics. A method was tested on a light sharing 13×13 LSO detector and a 310 ps average crystal time resolution was measured against a single LSO reference detector using optimal signal delays based on a digital leading edge (LE) triggering scheme in a 250 ps sampling interval. The improvement with this method was measured to be about 5.2% compared to the no time alignment case. The crystal time resolution improvements against a single LSO reference detector ranged from 2% to 9% after optimal signal delay implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.