Abstract

The reliability of a micro-machined AlGaN/GaN/Si high electron mobility transistor (HEMT) device is studied using drain current low frequency noise measurements for various stress conditions. After removal of the Si substrate beneath the HEMT, a high quality 300nm layer of SiO2 and a 20μm copper layer are deposited to form the GaN-on-insulator structure. Compared to previous full substrate removal methods, the self-heating effect of the GaN HEMT under high current operation is overcome because there is a thick copper thermal sinking layer in the design. In addition, the traps at the buffer/transition interface are also eliminated, which is a dominant factor in device reliability after long-term stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.