Abstract

Component technologies of laser micro machining systems are key factors affecting their overall performance. The effects of these technologies on accuracy, repeatability and reproducibility (ARR) in different implementations of such systems have to be investigated to quantify their contributions to the overall processing uncertainty, especially those with the highest impact on beam delivery sub-systems. The aim of this research was to evaluate the capabilities of state-of-the-art machining platforms that were specially designed and implemented for laser micro structuring and texturing. An empirical comparative study was conducted to quantify the effects of key component technologies on ARR of four state-of-the-art systems. In particular, the capabilities of the optical and mechanical axes were investigated when they were utilised separately or in combination for precision laser machining. Conclusions are made about the positional accuracy of the mechanical and optical axes and the importance of their proper calibration on the systems’ overall performance is discussed. It is shown that the laser machining platforms can achieve repeatability and reproducibility better than 2μm and 6μm, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.