Abstract
In this paper, the investigation into in-cylinder tumble flow characteristics with reduced Maximum Valve Lifts (MVL) is presented. The experimental work was conducted in a modified four-valve Spark-Ignition (SI) test engine, with optical accesses for measuring in-cylinder air motion in the vertical direction. Three different MVL of 6.8 mm, 4.0 mm and 1.7 mm were tested and Particle Image Velocimetry (PIV) was employed for those measurements. Measurement results were analysed by examining the tumble flow field, the tumble ratio variation and the fluctuating kinetic energy distribution. Meanwhile, a numerical analysis method for detecting the vortex centre was developed. From results of the vortex centre distribution, the cyclic variation of the in-cylinder flow was explored. The phase-averaged flow fields show that higher MVLs could produce stronger vertical flows which turn more toward to the piston top and finally are possible to form big scale tumble flow structure. Although lower MVLs create a higher tumble ratio when the piston is close to the Bottom Dead Centre (BDC), higher MVLs substantially produce higher tumble ratios when the piston is moving close to the Top Dead Centre (TDC). In terms of kinetic energy, lower MVLs result in higher values including higher total kinetic energy and higher fluctuating energy. Finally, the vortex centres results demonstrate lower MVLs could enhance cycle-to-cycle variation due to the weakened tumble vortex.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have