Abstract

Passengers' demands for riding comfort have been getting higher and higher as the high-speed railway develops. Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis (OTPA) method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method, which has high test efficiency and can be carried out during the working state of the targeted machine. The OTPA model is established from the aspects of "path reference point-target point" and "sound source reference point-target point". As for the mechanism of the noise transmission path, an assumption is made that the direct sound propagation is ignored, and the symmetric sound source and the symmetric path are merged. Using the operational test data and the OTPA method, combined with the results of spherical array sound source identification, the path contribution and sound source contribution of the interior noise are analyzed, respectively, from aspects of the total value and spectrum. The results show that the OTPA conforms to the calculation results of the spherical array sound source identification. At low speed, the contribution of the floor path and the contribution of the bogie sources are dominant. When the speed is greater than 300 km/h, the contribution of the roof path is dominant. Moreover, for the carriage with a pantograph, the lifted pantograph is an obvious source. The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation, and the contribution of air excitation is non-significant. Certain analyses of train parts provide guides for the interior noise control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.