Abstract
We are interested in the inverse scattering problem for semi-linear wave equations in one dimension. Assuming null conditions, we prove that small data lead to global existence of solutions to [Formula: see text]-dimensional semi-linear wave equations. This result allows us to construct the scattering fields and their corresponding weighted Sobolev spaces at the infinities. Finally, we prove that the scattering operator not only describes the scattering behavior of the solution but also uniquely determines the solution. The key ingredient of our proof is the same strategy proposed by Le Floch and LeFloch [On the global evolution of self-gravitating matter. Nonlinear interactions in Gowdy symmetry, Arch. Ration. Mech. Anal. 233 (2019) 45–86] as well as Luli et al. [On one-dimension semi-linear wave equations with null conditions, Adv. Math. 329 (2018) 174–188] to make full use of the null structure and the weighted energy estimates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have