Abstract

This paper presents an inverse method for calculating the thermal residual stresses in welded specimens via measured fatigue crack growth rates. Firstly, fracture-mechanics superposition law has been used to extract the stress intensity factor due to residual stress contribution from measured crack growth rate. Secondly, a so-called B matrix has been established by performing finite element analysis. Residual stress distribution is then determined by solving linear algebraic equations relating the B matrix and residual stress intensity factors obtained from crack growth test data. The inverse method has been validated by a well-established residual stress distribution and corresponding stress intensity factor, and then applied to an M(T) sample in 2024-T3 alloy with a longitudinal weld. Agreement with the measured residual stresses is reasonably good and reasons for certain differences between the calculated and measured are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.