Abstract

The properties and microstructure of Type 304L stainless steel produced by two additive manufacturing (AM) methods—directed energy deposition (DED) and powder bed fusion (PBF)—are evaluated and compared. Localized heating and steep temperature gradients of AM processes lead to significant residual stress and distinctive microstructures, which may be process-specific and influence mechanical behavior. Test data show that materials produced by DED and PDF have small differences in tensile strengths but clear differences in residual stress and microstructural features. Measured fatigue crack growth rates (FCGRs) for cracks propagating parallel to and perpendicular to the build directions differ between the two AM materials. To separate the influences of residual stress and microstructure, K-control test procedures with decreasing and constant stress intensity factor ranges are used to measure FCGRs in the near-threshold regime (crack growth rates ≤ 1 × 10−8 m/cycle). Residual stress is quantified by the residual stress intensity factor, Kres, measured by the online crack compliance method. Correcting the FCGR data for differences in Kres brings results for specimens of the two AM materials into agreement with each other and with results for wrought specimens, when the latter are corrected for crack closure. Differences in microstructure and tensile strength have an insignificant influence on FCGRs in these tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.