Abstract

This paper investigates inventory control policies in a manufacturing/remanufacturing system during the product life cycle, which consists of four phases: introduction, growth, maturity, and decline. Both demand rate and return rate of products are random variables with normal distribution; the mean of the distribution varies according to the time in the product life cycle. Closed-form formulas of optimal production lot size, reorder point, and safety stock in each phase of the product life cycle are derived. A numerical example is presented with sensitivity analysis. The result shows that different inventory control policies should be adopted in different phases of the product life cycle. It is also found that the optimal production lot size and reorder point are not sensitive to the phase length and the demand changing rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.