Abstract

Electrical high-frequency stimulation (HFS), using implanted electrodes targeting various brain regions, has been proven as an effective treatment for various neurological and psychiatric disorders. HFS in the deep region of the brain, also named deep-brain stimulation (DBS), is becoming increasingly important in clinical trials. Recent progress in the field of high-frequency DBS (HF-DBS) surgery has begun to spread the possibility of utilizing this invasive technique to other situations, such as treatment for major depression disorder (MDD), obsessive-compulsive disorder (OCD), and so on. Despite these expanding indications, the underlying mechanisms of the beneficial effects of HF-DBS remain enigmatic. To address this question, one approach is to use implanted electrodes that sparsely activate distributed subpopulations of neurons by HFS. It has been reported that HFS in the anterior nucleus of the thalamus could be used for the treatment of refractory epilepsy in the clinic. The underlying mechanisms might be related to the increased neurogenesis and altered neuronal activity. Therefore, we are interested in exploring the physiological alterations by the detection of neuronal activity as well as neurogenesis in the mouse dentate gyrus (DG) before and after HFS treatment. In this manuscript, we describe methodologies for HFS to target the activation of the DG in mice, directly or indirectly and in an acute or chronic manner. In addition, we describe a detailed protocol for the preparation of brain slices for c-fos and Notch1 immunofluorescent staining to monitor the neuronal activity and signaling activation and for bromodeoxyuridine (BrdU) labeling to determine the neurogenesis after the HF-DBS induction. The activation of the neuronal activity and neurogenesis after the HF-DBS treatment provides direct neurobiological evidence and potential therapeutic benefits. Particularly, this methodology can be modified and applied to target other interested brain regions such as the basal ganglia and subthalamic regions for specific brain disorders in the clinic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.