Abstract
E. coli continues to serve as a key model for the structure and function of the ribosome, structures of ribosome from other organisms and domains of life have also greatly contributed to our knowledge of protein synthesis. Many structural models of the ribosome in a number of steps of the protein synthesis cycle have been solved by cryo-electron microscopy (cryo-EM) and x-ray crystallography. This chapter introduces the structure and dynamics of the ribosome based on these structures and ends with a brief discussion of the many questions that the structures leave unanswered. Protein synthesis is a multistep process, and the structural features of the ribosome along with the large number of cofactors reflect the complexity of translation. Numerous protein factors in addition to the ribosome contribute to translation in bacteria during the steps of initiation, elongation, termination, and recycling. These protein factors make intimate contacts to key regions of the ribosome, and this aspect is discussed in the chapter in light of our present understanding of the structure and function of the ribosome. The intact ribosome contains three binding sites for substrate tRNAs that are termed as the aminoacyl-tRNA site (A site), peptidyl-tRNA site (P site), and exit-tRNA site (E site). These three binding sites span the interface between the 30S and 50S subunits. The central activity of the ribosome is catalysis of peptide bond formation. The region of the ribosome responsible for catalyzing the reaction is called the peptidyl transferase center (PTC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.