Abstract

Purification of montmorillonite is a process to remove non clay minerals (gangue) such as calcite, feldspar, quartz, opal (C-T), and mica from montmorillonite ore. This is performed to make montmorillonite suitable for use in sensitive applications such as pharmaceutical, cosmetic, food, and advanced materials for nanotechnology. Gangue minerals in raw montmorillonite ores can cause serious health problems when used in pharmaceutics, cosmetic, and food industries and reduce material quality in advanced materials production. Montmorillonite purification can be divided into two main classes as physical and chemical purification. Physical purification processes are based on particle size difference between the gangue and montmorillonite minerals. Purification processes based on gravity separation are ineffective since the specific weights of gangue and montmorillonite minerals are very close to each other. Physical purification process includes sedimentation, centrifugal separation, aero separation, and sieving techniques. Chemical purification of montmorillonite is based on dissolution and so extraction of carbonates, metal hydroxides, organic materials, and silica, respectively, using different leaching techniques.

Highlights

  • Montmorillonite, a type of smectite mineral, is an aqueous aluminum silicate

  • The efficiency of each purification technique can be assessed based on XRD, XRF, particle size, cation exchange capacity (CEC), swelling index (SI) analyzes before and after experiments

  • Falcon gravity concentrator (FGC) was used for centrifugal separation and the process used can be summarized as follow

Read more

Summary

Introduction

Montmorillonite, a type of smectite mineral, is an aqueous aluminum silicate. It has a layered crystalline structure with the general chemical formula of (Na,Ca)0.33(Al, Mg) (Si4O10)(OH)2*nH2O. Montmorillonite clay has some superior characteristics such as high surface area, high swelling capacity, good adsorbent ability, high cation exchange capacity, plasticity, high chemical stability, and good mechanical properties [1–4]. Due to these properties it exhibits, montmorillonite has many uses and research areas, some of which can be listed as pharmaceutical and cosmetic industry, adsorbents, catalysts, drilling mud, and filler in construction industries such as ceramics [2, 5–7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call