Abstract

Structural equation models (SEMs) are widely used to handle multiequation systems that involve latent variables, multiple indicators, and measurement error. Maximum likelihood (ML) and diagonally weighted least squares (DWLS) dominate the estimation of SEMs with continuous or categorical endogenous variables, respectively. When a model is correctly specified, ML and DWLS function well. But, in the face of incorrect structures or nonconvergence, their performance can seriously deteriorate. Model implied instrumental variable, two stage least squares (MIIV-2SLS) estimates and tests individual equations, is more robust to misspecifications, and is noniterative, thus avoiding nonconvergence. This article is an overview and tutorial on MIIV-2SLS. It reviews the six major steps in using MIIV-2SLS: (a) model specification; (b) model identification; (c) latent to observed (L2O) variable transformation; (d) finding MIIVs; (e) using 2SLS; and (f) tests of overidentified equations. Each step is illustrated using a running empirical example from Reisenzein's (1986) randomized experiment on helping behavior. We also explain and illustrate the analytic conditions under which an equation estimated with MIIV-2SLS is robust to structural misspecifications. We include additional sections on MIIV approaches using a covariance matrix and mean vector as data input, conducting multilevel SEM, analyzing categorical endogenous variables, causal inference, and extensions and applications. Online supplemental material illustrates input code for all examples and simulations using the R package MIIVsem. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.