Abstract

CMOS and NMOS By the late 1970s complementary metal oxide semiconductor (CMOS) started to become the process of choice for digital semiconductor designs. CMOS had originally been proposed by Frank Wanlass in 1963 as a low standby power technology, since CMOS logic gates dissipate almost no power when the inputs to the gate do not change [1]. This follows as CMOS contains both PMOS field effect transistors (FETs), which can efficiently drive a high voltage, or logic one value, and NMOS transistors, which are good at driving a zero voltage. The presence of complementary transistors allows CMOS logic gates to be implemented so that the output voltage level is connected to the power or ground line, but not both. This ability to avoid contention ensures that if the inputs are not changing, then no power is dissipated. This was a major advantage of CMOS over the other manufacturing processes then available, which dissipated constant leakage or bias currents. In Figure 1.1 the schematic representation of a CMOS static NAND logic gate is shown. The logic gate has two inputs A and B. A high logic value at inputs A and B turns on transistors MN1 and MN2, while turning off transistors MP1 and MP2. This causes the output Z to be low. When either input A or B is off, however, the path to the ground line is ruptured, with a path to the power supply (by convention called Vdd) being established. This causes Z to rise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.